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1 Introduction
Bloom filters keep an array H of n bits initially set to 0. Insertion is done by hashing an input x k times
with k different hash functions and setting the corresponding k bits in H to 1. Querying is done by hashing
a value y k times with the same k hash functions used for insertion and checking to see whether all k of
those bits are 1. The brilliance of this approach is that both insertion and querying can be done in O(1)
with very, very little space, efficiencies traditional hash tables can not reach. The trouble, of course, is that
there is some nonzero probability that all k bits accessed in a query were set to 1 by additions of xs that
were not y. The purpose of this project is to do some analysis of that error rate.

2 Hashing Machinery: A Foray in to Probability
Early on I got stuck wondering how I could hash numbers simply for insertion and then reproduce those
same hashes at query-time. Ideally, I would have k functions that all output perfectly uniform distributions
given any inputs, but implementing such functions is potentially very complicated. To find a solution, I
created Analysis.java and Analysis.m and tried several mathematical manipulations based on multiplication
and overflow. The results were random in some cases but not for all cases. Eventually I realized a random
number XOR a random number is a random number, so I could keep a vector of k random numbers and
XOR with inputs to simulate a call to hash(input).

To prove the validity of this approach, I ran simulations. For two simulated hashes, Figure 1 depicts
the contents of n = 1000 “bins” filled with m = 1000000 “balls” ((a) and (c)) as well as histograms of the
number of bins that contain b ± q balls ((b) and (d)). For all simulated hashes I have tried (dozens), the
results look like this white noise.
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Figure 1: Analysis of simulated hash function demonstrating that input XOR kth random number is valid.

To make further sense of the above, recall that the probability a given bin i in H holds b balls is given
by Bernoulli trials as:
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By the central limit theorem, as the number of trials goes to infinity, the distribution of these new random
variables is given by a Gaussian iff the underlying trials are independent, which is as I observe. So, since these
hash-events are independent, and since the mean of the output is centered around E[balls per bin] = m

n ,
this method of simulating hashes does exactly what a real hash function would do.

3 Theory: The Math
First, a derivation of the theoretical error rate for Bloom Filters. This math is important to fully understand
the results given hereafter.

Pr(false positive|input y) = Pr(H[h1(y)] = 1 ∧H[h2(y)] = 1 ∧...H[hk(y)] = 1), where hx is a hash function

hashes are indep. =⇒ above = Pr(H[h1(y)] = 1) ∧ Pr(H[h2(y)] = 1) ∧...P r(H[hk(y)] = 1) = Pr(H[bit] = 1)k

Pr(H[bit] = 1) = 1− Pr(H[bit] = 0), P r(H[bit] = 0|1 trial) = (1− 1/n)
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|insertions| · |hashfunctions| = mk trials→ Pr(H[bit] = 0|mk trials) = (1− 1/n)mk

=⇒ Pr(false positive|y, m insertions) = (1− (1− 1/n)mk))k

But : (1− 1/n) ≈ e−1/n for large n, and lim
n→∞

(1− 1/n) = lim
n→∞

e−1/n = 1, so :

Pr(false positive|y, m insertions) ≈ (1− e−mk/n)k (= as n→∞)

4 Simulation and Results
My BloomFilter.java code implements the insert and query functionality described in the intro backed by
an array of d n

32e ints and utilizing the simulated hashes described in Section 2. I use k = n
m ln(2) (or the

nearest integer) hash functions, the number which minimizes false positives, as found from the critical point
of (1− e−mk/n)k. See my code for all the details; it’s fairly straight-forward.

The simulation itself works by iterating over n ∈ {10, 102, 103, 104, 105, 106} and c = n
m ∈ {1, 2, 5, 10, 25, 100}

(which all divide n evenly). On each pass I set up the Bloom Filter anew for that (n, c), insert m random num-
bers, query over [0,max int-1] (my chosen universe) to find all “true” responses, calculate the false-positive
rate with

rateFP =
|FP |

|FP |+ |TN |
=

|P | − |TP |
|Universe| − |TP |

,

and finally write results to a file. I force a repeat trial for each (n, c) pair five times so I can see variance.
After a couple of hours for run-time, I processed the results in Matlab with BloomFilter.m to generate

the plots shown in Figure 2. Since rateFP → 0 as c → ∞, I have shown the data on a log-log scale in
addition to log-linear.
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Figure 2: Bloom Filter false positive rates for multiple values of c as n increases.

One should notice immediately that increasing c does wonders for the error rate. At c = 50, I only
observe a false positive on a small fraction of my trials, and at c = 100, I observe none. The reason for this

should be clear: My universe is 231 − 1 elements large, and the theoretical error rate for this c is 1
2

100ln(2)
.

The product of these numbers, the probability I see a false positive on any given run, is 2.92 · 10−12!
The other important result from this analysis is less obvious but just as important. Notice there is more

variation between datapoints at small n, but as n grows this variance shrinks, and trials fit more tightly to
the theoretical prediction. The reason for this is in the math: Remember the functions (1− 1/n) and e−1/n

are better approximations of each other as n→∞.

5 Conclusion
This class is the first place I have ever heard of Bloom Filters. Considering how fast they are, how little
space they take, and how low their error rates can be, I will keep them in mind for applications where a very
few false-positives is okay.

I am including all of the files I used to generate this report in my submission, probably more than you
want. Focus on BloomFilter.java if you only have time for one.
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