CS 6505 Bloom Filters Project Report

Pavel Komarov

May 17, 2016

1 Introduction

Bloom filters keep an array H of n bits initially set to 0 . Insertion is done by hashing an input $x k$ times with k different hash functions and setting the corresponding k bits in H to 1 . Querying is done by hashing a value $y k$ times with the same k hash functions used for insertion and checking to see whether all k of those bits are 1. The brilliance of this approach is that both insertion and querying can be done in $O(1)$ with very, very little space, efficiencies traditional hash tables can not reach. The trouble, of course, is that there is some nonzero probability that all k bits accessed in a query were set to 1 by additions of x s that were not y. The purpose of this project is to do some analysis of that error rate.

2 Hashing Machinery: A Foray in to Probability

Early on I got stuck wondering how I could hash numbers simply for insertion and then reproduce those same hashes at query-time. Ideally, I would have k functions that all output perfectly uniform distributions given any inputs, but implementing such functions is potentially very complicated. To find a solution, I created Analysis.java and Analysis.m and tried several mathematical manipulations based on multiplication and overflow. The results were random in some cases but not for all cases. Eventually I realized a random number XOR a random number is a random number, so I could keep a vector of k random numbers and XOR with inputs to simulate a call to hash(input).

To prove the validity of this approach, I ran simulations. For two simulated hashes, Figure 1 depicts the contents of $n=1000$ "bins" filled with $m=1000000$ "balls" ((a) and (c)) as well as histograms of the number of bins that contain $b \pm q$ balls ((b) and (d)). For all simulated hashes I have tried (dozens), the results look like this white noise.

Figure 1: Analysis of simulated hash function demonstrating that input XOR k th random number is valid.
To make further sense of the above, recall that the probability a given bin i in H holds b balls is given by Bernoulli trials as:

$$
\operatorname{Pr}\left[H_{i}=b\right]=\binom{m}{b}\left(\frac{1}{n}\right)^{b}\left(1-\frac{1}{n}\right)^{m-b}
$$

By the central limit theorem, as the number of trials goes to infinity, the distribution of these new random variables is given by a Gaussian iff the underlying trials are independent, which is as I observe. So, since these hash-events are independent, and since the mean of the output is centered around $E[$ balls per bin $]=\frac{m}{n}$, this method of simulating hashes does exactly what a real hash function would do.

3 Theory: The Math

First, a derivation of the theoretical error rate for Bloom Filters. This math is important to fully understand the results given hereafter.
$\operatorname{Pr}($ false positive \mid input $y)=\operatorname{Pr}\left(H\left[h_{1}(y)\right]=1 \wedge H\left[h_{2}(y)\right]=1 \wedge \ldots H\left[h_{k}(y)\right]=1\right)$, where h_{x} is a hash function hashes are indep. \Longrightarrow above $=\operatorname{Pr}\left(H\left[h_{1}(y)\right]=1\right) \wedge \operatorname{Pr}\left(H\left[h_{2}(y)\right]=1\right) \wedge \ldots \operatorname{Pr}\left(H\left[h_{k}(y)\right]=1\right)=\operatorname{Pr}(H[b i t]=1)^{k}$

$$
\operatorname{Pr}(H[b i t]=1)=1-\operatorname{Pr}(H[b i t]=0), \operatorname{Pr}(H[b i t]=0 \mid 1 \text { trial })=(1-1 / n)
$$

$$
\begin{gathered}
\mid \text { insertions }|\cdot| \text { hashfunctions } \mid=m k \text { trials } \rightarrow \operatorname{Pr}(H[\text { bit }]=0 \mid m k \text { trials })=(1-1 / n)^{m k} \\
\left.\Longrightarrow \operatorname{Pr}(\text { false positive } \mid y, m \text { insertions })=\left(1-(1-1 / n)^{m k}\right)\right)^{k} \\
\text { But }:(1-1 / n) \approx e^{-1 / n} \text { for large } n, \text { and } \lim _{n \rightarrow \infty}(1-1 / n)=\lim _{n \rightarrow \infty} e^{-1 / n}=1, \text { so : } \\
\operatorname{Pr}(\text { false positive } \mid y, m \text { insertions }) \approx\left(1-e^{-m k / n}\right)^{k}(=\text { as } n \rightarrow \infty)
\end{gathered}
$$

4 Simulation and Results

My BloomFilter.java code implements the insert and query functionality described in the intro backed by an array of $\left\lceil\frac{n}{32}\right\rceil$ ints and utilizing the simulated hashes described in Section 2. I use $k=\frac{n}{m} \ln (2)$ (or the nearest integer) hash functions, the number which minimizes false positives, as found from the critical point of $\left(1-e^{-m k / n}\right)^{k}$. See my code for all the details; it's fairly straight-forward.

The simulation itself works by iterating over $n \in\left\{10,10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}\right\}$ and $c=\frac{n}{m} \in\{1,2,5,10,25,100\}$ (which all divide n evenly). On each pass I set up the Bloom Filter anew for that (n, c), insert m random numbers, query over [0, max int-1] (my chosen universe) to find all "true" responses, calculate the false-positive rate with

$$
\text { rate }_{F P}=\frac{|F P|}{|F P|+|T N|}=\frac{|P|-|T P|}{\mid \text { Universe }|-|T P|},
$$

and finally write results to a file. I force a repeat trial for each (n, c) pair five times so I can see variance.
After a couple of hours for run-time, I processed the results in Matlab with BloomFilter.m to generate the plots shown in Figure 2. Since rate $_{F P} \rightarrow 0$ as $c \rightarrow \infty$, I have shown the data on a log-log scale in addition to log-linear.

(a)

(b)

Figure 2: Bloom Filter false positive rates for multiple values of c as n increases.
One should notice immediately that increasing c does wonders for the error rate. At $c=50$, I only observe a false positive on a small fraction of my trials, and at $c=100$, I observe none. The reason for this should be clear: My universe is $2^{31}-1$ elements large, and the theoretical error rate for this c is $\frac{1}{2}^{100 \ln (2)}$. The product of these numbers, the probability I see a false positive on any given run, is $2.92 \cdot 10^{-12}$!

The other important result from this analysis is less obvious but just as important. Notice there is more variation between datapoints at small n, but as n grows this variance shrinks, and trials fit more tightly to the theoretical prediction. The reason for this is in the math: Remember the functions $(1-1 / n)$ and $e^{-1 / n}$ are better approximations of each other as $n \rightarrow \infty$.

5 Conclusion

This class is the first place I have ever heard of Bloom Filters. Considering how fast they are, how little space they take, and how low their error rates can be, I will keep them in mind for applications where a very few false-positives is okay.

I am including all of the files I used to generate this report in my submission, probably more than you want. Focus on BloomFilter.java if you only have time for one.

