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One of the happiest accidents in all math is the ease of taking derivatives in the Fourier (i.e. the frequency) domain.
But in order to exploit this extraordinary fact without serious artefacting, and in order to be able to use a computer,
we need quite a bit of extra knowledge and care.

This document sets out the math behind the spectral-derivatives package, all the way down to the bones, as
much as I can manage. I try to get in to the real whys behind what we’re doing here, touching on fundamental signal
processing and calculus concepts as necessary, and building upwards to more general cases.
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1 Bases

A basis is a set of “orthogonal” functions, call them {ξk}, that can be summed together in various quantities to produce
other functions. Othogonal means that if we take the “inner product” of one funtion from the set with itself, we get
back 1, and if we take the inner product of a function with a different member of the set, we get back 0. In this sense
the members of the basis set are independent of one another, just like perpendicular directions on a graph.

The inner product between two functions f and g is a generalization of the inner product between vectors, where
instead of summing over a finite number of discrete entries, we integrate over infinitely many infinitesimally-separated
points in the domain. We define it as:

⟨f, g⟩ =
b∫

a

f(x)g(x)dx

where the overbar · denotes a complex conjugate.

The inner product is symmetrical, so

⟨f, g⟩ = ⟨g, f⟩ =
b∫

a

f(x)g(x)dx

Note that if we set a and b at ±∞, this integral could diverge. If it doesn’t diverge with infinite bounds, we say the
argument is “Lebesgue integrable”[1]. Some of what we’ll do only makes sense for this class of functions, so be aware.

1.1 The Fourier Basis

The most famous basis is the Fourier basisa, which is the set of complex exponentials:

ejω = cos(ω) + j sin(ω) (1)

where I’m using j to represent the imaginary unit, because I’m from Electrical Engineering, and because Python
uses j.

Why this identity is true isn’t obvious at first but can be seen by Taylor Expanding[3] the exponential function
and trigonometric functions:

ex = 1 + x+
x2

2!
+

x3

3!
+ ... =

∞∑
n=0

xn

n!

So

ejω = 1 + jω +
(jω)2

2!
+

(jω)3

3!
+ ... = 1 + jω − ω2

2!
− j

ω3

3!
+

ω4

4!
− ...

sin(ω) = ω − ω3

3!
+

ω5

5!
− ω7

7!
+ ...

cos(ω) = 1− ω2

2!
+

ω4

4!
− ω6

6!
+ ...

Notice all of the even-power terms appear with alternating sign as in the cosine expansion, and the odd-power
terms appear with alternating sign as in the sine expansion, but with an extra j multiplied in.

The presence of complex numbers to make this work can be confusing at first, but don’t be scared! All we’re really
doing is using a compressed representation of a sine plus a cosine, where the real and imaginary parts (orthogonal in
the complex plane, and therefore independent and non-interfering) allow us to describe the contributions of sine and
cosine simultaneously. In fact, Joseph Fourier originally used only real trigonometric functions[4], and it wasn’t until
later someone decided it would be easier to work with complex exponentials. Later (subsection 2.1) we’ll see that for
real signals all the complex numbers cancel, leaving only a real sine and real cosine, which when added together make
a single, phase-shifted sinusoid! So think of ejω as oscillations at a particular frequency, ω.

If we inner product mismatched wiggles, they misalign and integrate to 0, but if we inner product matched wiggles,
they align, multiply to 1 because of the complex conjugate, and integrate to 2π over a period.

2

https://mathworld.wolfram.com/LebesgueIntegrable.html
https://math.stackexchange.com/a/492165/278341
https://math.stackexchange.com/a/1293127/278341


2 Transforms

I can use a basis to “transform” a function, meaning I take the function’s inner product with each of the basis functions
to produce numbers:

⟨f, ξk⟩ =
b∫

a

f(x)ξk(x)dx = a constant coefficient, ck

These numbers descibe how much of each basis function ξk is present in the signal f on a domain between a and
b. If I do this for all the {ξk}, I essentially get a recipe, which says “I need this much of ξ0 and that much of ξ1 and
howevermuch of ξ2 ... added together to reproduce the original signal.”

f(x) =

M−1∑
k=0

ckξk(x), x ∈ [a, b]

where M is the number of basis functions I’m using in my reconstruction.

The set of numbers ck is now an alternative representation of the original function. In some sense it’s equally
descriptive, so long as we know which basis we’re using to reconstruct. We’ve transformed the function to a set of
numbers which now live in a different domain.

Beware that the terminology “transform” and “domain” is not always used to describe transforming a continuous
function to a discrete set of ck like this, because “domain” technically refers to a “connected” set, not just a collection
of k things. However, it is possible for members of the basis set to be related through a continuous parameter which
in some sense makes the set dense, having infinitely many members which are infinitesimally close together. This is
the case for the Fourier basis, where we choose ω ∈ R, and hence ω really can become a new domain.

2.1 The Fourier Transform

Using Fourier’s original real-sinusoid-based formulation, we can write the reconstruction expression as∗:

f(x) = a0 +

∞∑
k=1

(ak cos(kω0x) + bk sin(kω0x))

where
• f is periodic with fundamental frequency ω0, so the kth frequency becomes k · ω0

• ak and bk are coefficients describing how much cosine and sine to add in, respectively
• k goes up to∞ because we need an infinite number of ever-higher-frequency sinusoids to reconstruct the function
with perfect fidelity

Let’s now use cos(x) = ejx+e−jx

2 and sin(x) = ejx−e−jx

2j , which can be verified by manipulating Euler’s formula,
Equation 1.

f(x) = a0 +

∞∑
k=1

(ak
ejkω0x + e−jkω0x

2
+ bk

ejkω0x − e−jkω0x

2j
)

= a0 +

−1∑
k=−∞

(
a−k

2
− b−k

2j
)ejkω0x +

∞∑
k=1

(
ak
2

+
bk
2j

)ejkω0x =

∞∑
k=−∞

cke
jkω0x

So if we choose c0 = a0 and ck = c−k = ak

2 + bk
2j , then the complex exponential formulation is exactly equivalent to

the trigonometric formulation[8]. That is, we can choose complex ck such that when multiplied by complex exponentials,
we get back only real signal! Essentially, the relative balance of real and complex in ck affects how much cosine and
sine are present at the kth frequency, thereby accomplishing a phase shift[9]. Without accounting for phase shifts, we
would only be able to model symmetric signals!

If instead of a fundamental frequency ω0 = 2π
T , where T is a period of repetition, the signal contains dense

frequencies (because it has no repetition, T →∞, ω0 → 0), and if we care about a domain of the entire set of R, then
∗It’s worth considering how weird it is this is true. In fact, it’s so weird that Joseph Lagrange publicly declared Fourier was wrong at a

meeting of the Paris Academy in 1807![5] It’s valuable to ask why this works[6] and sift through some analysis.[7]
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https://math.uchicago.edu/~may/REU2017/REUPapers/Xue.pdf


it makes more sense to express the transformed coefficients as a function in ω and to make both our inner product and
reconstruction expression integrals from −∞ to +∞:

f̂(ω) =

∞∫
−∞

f(x)e−jωxdx = F{f(x)}

f(x) =
1

2π

∞∫
−∞

f̂(ω)ejωxdω = F−1{f̂(ω)}

(2)

where the hat ·̂ represents a function in the Fourier domain, and the 1
2π is a scaling factor that corrects for the fact

the inner product of a Fourier basis function with itself integrates to 2π over a period instead of to 1 as we need for
orthonormality.

Just like the ck, f̂(ω) can be complex, but if the original f(x) is real, then f̂ ’s complexity will perfectly interact
with the complex exponentials to produce only a real function in the reconstruction.

2.2 A Whole Family

Part of what makes Fourier transforms confusing is the proliferation of different variants for different situations, so it’s
worth categorizing them.[10]. First off, are we dealing with a periodic signal (which has an ω0) or an aperiodic signal
(which doesn’t)? And second, are we dealing with a continuous function or discrete samples?

Periodic Aperiodic

C
o
n
ti
n
u
ou

s
D
is
cr
et
e

x(t)

X(ejω)

x(t)

X(jω)

x[n]

X[k]

x[n]

ck

DTFT−1

DTFT

FS−1

FS

DFT−1 DFT

FTFT−1

Note that, following a more signal-processing-y convention[11], the function we’re transforming is now called x, and
the independent variable, since it can no longer be x, is named t. For discrete signals, we use independent variable n
in square brackets.

Here FS stands for “Fourier Series”, which is the first situation covered above. FT stands for “Fourier Transform”,
which is given by the integral pair, Equation 2. But these are not the only possibilities! DTFT stands for “Discrete
Time Fourier Transform”, where the signal we want to analyze is discrete but the transform is continuous. And finally
DFT stands for “Discrete Fourier Transform”, not to be confused with the DTFT, which we use when both the original
and transformed signals are sampled.

All of these can be considered Fourier transforms, but often when people talk about the canonical “Fourier capital-T
Transform”, they are referring to the continuous, aperiodic case in the upper righthand cell.

The notation of all these different functions and transforms is easy to mix up and made all the more confusing by
the reuse of symbols. But it’s important to keep straight which situation we’re in. I can only apologize. For more on
all these, see [11].
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3 Taking Derivatives in the Fourier Domain

Let’s take a Fourier transform of the derivative of a function[12]:

F{ d

dx
f(x)} =

∞∫
−∞

df

dx︸︷︷︸
dv

e−jωx︸ ︷︷ ︸
u

dx = f(x)e−jωx
∣∣∣∞
−∞︸ ︷︷ ︸

0 for Lebesgue-
integrable
functions

−
∞∫

−∞

f(x)(−jω)e−jωxdx = jω · f̂(ω)

We can use the inverse transform equation to see the same thing:

d

dx
f(x) =

d

dx

1

2π

∞∫
−∞

f̂(ω)ejωxdω =
1

2π

∞∫
−∞

f̂(ω)
d

dx
ejωxdω = F−1{jω · f̂(ω)}

So a derivative in the x domain can be accomplished by a multiplication in the frequency domain. We can raise to
higher derivatives simply by multiplying by jω more times.

This is great because taking derivatives in the spatial domain is actually pretty hard, especially if we’re working with
discrete samples of a signal, whereas taking the derivative this way in the frequency domain, the spectral derivative,
gives us much better fidelity.[13][14] The cost is that we have to do a Fourier transform and inverse Fourier transform
to sandwich the actual differentiation, but there is an O(N logN) algorithm to accompish the DFT (subsection 2.2,
Equation 3) for discrete signals called the Cooley-Tukey algorithm, also known as the Fast Fourier Transform (FFT)[14].

3.1 Taking Derivatives in the Discrete Case

Because we’re going to want to use a computer, and a computer can only operate on discrete representations, we really
need to talk about the DFT and what it means to take a derivative in this discrete paradigm. It has a connection to
the above continuous case but is far more subtle, worth going in to at some length.

3.1.1 The DFT Pair

DFT: Yk =

M−1∑
n=0

yne
−j 2π

M nk

DFT−1: yn =
1

M

M−1∑
k=0

Yke
j 2π

M nk

(3)

where
• n iterates samples in the original domain (often spatial)
• k iterates samples in the frequency domain (wavenumbers)
• M is the number of samples in the signal, often given as N by other sources[15], but I’ll use N for something
else later and want to be consistent

• y denotes the signal in its original domain
• Y denotes the signal in the frequency domain

To see where this comes from, see [16] or [11].

For simplicity, we can collect 2π
M n as a single term, θn ∈ [0, 2π), or 2π

M k as a single term, ωk. We then get yn = y(θn)
and Yk = Y (ωk). This may help highlight the fact the original signal and transformed signal live on a domain which
maps to the unit circle[17] (hence periodicity and aliasing) and are being sampled at equally-spaced angles/angular
velocities.

3.1.2 Interpolation

I now quote Steven Johnson[18], with some of my own symbols and notation sprinkled in:

“In order to compute derivatives like y′(θ), we need to do more than express yn. We need to use the
DFT−1 expression to define a continuous interpolation between the samples yn—this is called trigono-
metric interpolation—and then differentiate this interpolation. At first glance, interpolating seems very
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straightforward: one simply evaluates the DFT−1 expression at non-integer n ∈ R. This indeed defines an
interpolation, but it is not the only interpolation, nor is it the best interpolation for this purpose. The rea-
son there is more than one interpolation is due to aliasing : any term e+jθnkYk in the DFT−1 can be replaced
by e+jθn(k+mM)Yk for any integer m and still give the same samples yn, since ej

2π
M nmM = ej2πnm = 1 for

any integers m and n. Essentially, adding the mM term to k means that the interpolated function y(θ)
just oscillates m extra times between the sample points, which has no effect on yn but has a huge effect
on derivatives. To resolve this ambiguity, one imposes additional criteria—e.g. a bandlimited spectrum
and/or minimizing some derivative of the interpolated y(θ)”

We can now posit a slightly more general formula for the underlying continuous, periodic (over interval length M)
signal:

y(θ) =
1

M

M−1∑
k=0

Yke
jθ(k+mkM), mk ∈ Z

“In order to uniquely determine the mk, a useful criterion is that we wish to oscillate as little as
possible between the sample points yn. One way to express this idea is to assume that y(θ) is bandlimited
to frequences |k + mkM | ≤ M

2 . Another approach, that gives the same result ... is to minimize the
mean-square slope”†

1

2π

2π∫
0

|y′(θ)|2dθ =
1

2π

2π∫
0

∣∣∣ 1
M

M−1∑
k=0

j(k +mkM)Yke
jθ(k+mkM)

∣∣∣2dθ
=

1

2πM2

2π∫
0

(M−1∑
k=0

j(k +mkM)Yke
jθ(k+mkM)

)(M−1∑
k=0

j(k +mkM)Ykejθ(k+mkM)
)
dθ

=
1

2πM2

2π∫
0

M−1∑
k=0

M−1∑
k′=0

(
j(k +mkM)Yke

jθ(k+mkM)
)(

j(k′ +mk′M)Yk′ejθ(k′+mk′M)
)
dθ

=
1

M2

M−1∑
k=0

M−1∑
k′=0

(k +mkM)(k′ +mk′M)YkYk′
1

2π

2π∫
0

ejθ(k+mkM)e−jθ(k′+mk′M)dθ

︸ ︷︷ ︸
=


0 if k +mkM ̸= k′ +mk′M

⇐⇒ k ̸= k′ for 0 ≤ k, k′ < M

1 if k = k′

=
1

M2

M−1∑
k=0

|Yk|2(k +mkM)2

We now seek to minimize this by choosing mk for each k. Only the last term depends on mk, so it’s sufficient to
minimize only this:

minimize
mk

(k +mkM)2

s.t. 0 ≤ k < M

mk ∈ Z

This problem actually admits of good ol’ calculus plus some common sense:

d

dmk
(k +mkM)2 = 2(k +mkM)M = 0 −→ m∗

k =
−k
M
∈ (−1, 0]

where ∗ denotes optimality. But we additionally need to choose mk ∈ Z. Let’s plot it to see what’s going on.

†It’s due to this ambiguity and constraint that spectral methods are only suitable for smooth functions!
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−1 −0.5 m∗
k

feasible costs

mk

cost

As we change the values of M and k, the parabola shifts around, getting taller for larger M and shifting leftward
as k →M .

We can see that for k ∈ [0, M
2 ), the mk = 0 solution is lower down the cost curve, and for k ∈ (M2 ,M), the mk = −1

solution is more optimal. “If k = M
2 (for even M), however, there is an ambiguity: either mk = 0 or −1 gives the

same value (k+mkM)2 = (M2 )2. For this YM/2 term (the “Nyquist” term), we can arbitrarily split up the YM/2 term

between m = 0 [jM
2 θ, positive frequency] and m = −1 [j(M2 −M)θ = −jM

2 θ, negative frequency]:”

YM/2(ue
j M

2 θ + (1− u)e−j M
2 θ)

where u ∈ C s.t. at sample points θn we get YM/2(ue
j M

2
2π
M n + (1− u)e−j M

2
2π
M n) = YM/2(u

(−1)n︷︸︸︷
ejπn +(1− u)

(−1)n︷ ︸︸ ︷
e−jπn) =

YM/2(−1)n, which at n = M
2 will be YM/2(−1)

M
2 = YM/2 cos(

M
2 π), “and so recover the DFT−1.”

If we use the above in the mean-squared slope derivation instead of Yke
jθ(k+mkM) and Yk′ejθ(k

′+mk′M), then the
integral portion becomes:

YM/2YM/2
1

2π

2π∫
0

(uej
M
2 θ + (1− u)e−j M

2 θ)(uej
M
2 θ + (1− u)e−j M

2 θ)dθ

= |YM/2|2
1

2π

(
uu

2π∫
0

ej
M
2 θe−j M

2 θ︸ ︷︷ ︸
=1

dθ + u(1− u)

2π∫
0

ej
M
2 θej

M
2 θ︸ ︷︷ ︸

periodic!

dθ + (1− u)u

2π∫
0

e−j M
2 θe−j M

2 θ︸ ︷︷ ︸
periodic!

dθ

+ (1− u)(1− u)

2π∫
0

e−j M
2 θej

M
2 θ︸ ︷︷ ︸

=1

dθ
)

= |YM/2|2
1

2π
(|u|22π + |1− u|22π) = |YM/2|2(|u|2 + |1− u|2)

because integrating something periodic over a multiple of its period yields 0.

We now know that the contribution to the mean-squared slope from the M
2

th
term ∝ |u|2 + |1 − u|2. What’s the

optimal u?

d

du
|u|2 + |1− u|2 = 2u− 2(1− u) = 0 −→ u =

1

2

So “the YM/2 term should be equally split between the frequencies ±M
2 θ, giving a cos(M2 θ) term.” Note that if M

is odd, there is no troublesome M
2 term like this, but later we’ll use the Discrete Cosine Transform[19] (DCT), which

is equivalent to the FFT with even M and Yk = YM−k, so we do have to worry about the Nyquist term.
Now if we put it all together we get “the unique “minimal-oscillation” trigonometric interpolation of order

M”:

y(θ) =
1

M

(
Y0 +

∑
0<k<M

2

(
Yke

jkθ + YM−ke
−jkθ

)
+ YM/2 cos(

M

2
θ)
)

(4)

“As a useful side effect, this choice of trigonometric interpolation has the property that real-valued samples yn (for
which Y0 is real and YM−k = Yk) will result in a purely real-valued interpolation y(θ) for all θ.”
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3.1.3 Taking Derivatives of the Interpolant

Now at last, with this interpolation between integer n in hand, we can take a derivative w.r.t. the spatial variable:

d

dθ
y(θ) =

1

M

( ∑
0<k<M

2

jk(Yke
jkθ − YM−ke

−jkθ)− M

2
YM/2 sin(

M

2
θ)
)

Evaluating at θn = 2π
M n, n ∈ Z, we get:

y′n =
1

M

( ∑
0<k<M

2

jk(Yke
jk 2π

M n − YM−ke
−jk 2π

M n)−
0

��������M

2
YM/2 sin(πn)

)
=

1

M

M−1∑
k=0

Y ′
ke

j 2π
M kn

where Y ′
k =


jk · Yk k < M

2

0 k = M
2

j(k −M) · Yk k > M
2 ← comes from: knew = M − kold, 0 < kold < M

2

→ M

2
< knew < M ;−jkold · YM−kold

→ −j(M − knew) · Yknew

Easy! Now let’s do the second derivative:

d2

dθ2
y(θ) =

1

M

( ∑
0<k<M

2

(jk)2(Yke
jk 2π

M n + YM−ke
−jk 2π

M n)−
(M

2

)2

YM/2 cos(
M

2
θ)
)

And again evaluating at θn = 2π
M n, n ∈ Z:

y′′n =
1

M

( ∑
0<k<M

2

(jk)2(Yke
jk 2π

M n + YM−ke
−jk 2π

M n)−
(M

2

)2

YM/2(−1)n
)
=

1

M

M−1∑
k=0

Y ′′
k ej

2π
M kn

where Y ′′
k =


(jk)2 · Yk k < M

2(
jM

2

)2

· Yk k = M
2

(j(k −M))2 · Yk k > M
2

or equivalently Y ′′
k =

{
(jk)2 · Yk k ≤ M

2

(j(k −M))2 · Yk k > M
2

It’s important to realize “this [second derivative] procedure is not equivalent to performing the spectral first-
derivative procedure twice (unless M is odd so that there is no YM/2 term) because the first derivative operation omits
the YM/2 term entirely.”[18]

We can repeat for higher derivatives, but the punchline is that for odd derivatives the M
2 term goes away‡, and for

even derivatives it comes back. In general:

Y
(ν)
k =


(jk)ν · Yk k < M

2

(jM
2 )ν · Yk k = M

2 and ν even

0 k = M
2 and ν odd

(j(k −M))ν · Yk k > M
2

(5)

This has definite echoes of the standardly-given, continuous-time case covered in section 3, but it’s emphatically
not as simple as just multiplying by jω or even by jk. However, the final answer is thankfully super compact to
represent in math and in code.

‡For real signals it is common (e.g. in the kind of code ChatGPT might generate to do this) not to worry about zeroing out the

Nyquist term and instead throw away the imaginary part of the inverse transform. This works because YM/2 =
∑M−1

n=0 yne
−j 2π

M
nM

2 =∑M−1
n=0 yn(−1)n, which will be purely real for real yn, and when we mulitply by (jk)ν for odd ν, then Y

(ν)
M/2

gets a constituent odd

power of j, which makes it purely imaginary. Then its contribution to the inverse transform (i.e. to each sample of the derivative y
(ν)
n )

is +Y
(ν)
M/2

ej
2π
M

nM
2 = +Y

(ν)
M/2

(−1)n, which will also be purely imaginary. Whereas other imaginary components in the transform of a real

signal have negated twins at negative frequency to pair with and become real sines in the inverse transform, the Nyquist term has no twin,
so it’s the only imaginary thing left over. Thus for real signals keeping only the ifft().real is equivalent to zeroing out the Nyquist term.
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3.2 Limitations

So far it has all been good news, but there is a serious caveat to using the Fourier basis, especially for derivatives.
Although a Fourier transform tends to have more “mass” at lower frequencies and fall off as we go to higher ones

(otherwise the reconstruction integral would diverge), and therefore we can get really great reconstructions by leaving
off higher modes[14], we in fact need all the infinite modes to reconstruct the true signal[11], and even then the Fourier
basis can not represent true discontinuities nor non-smooth corners, instead converging “almost everywhere”, which
is math speak for the “measure” or volume of the set where it doesn’t work being 0, meaning it only doesn’t work at
the discontinuities or corners themselves.[11]

If there are discontinuities or corners, we get what’s called the Gibbs Phenomenon[11], essentially overshoot as the
set of basis functions tries to fit a sudden change. These extra wiggles are bad news for function approximation but
even worse news for taking derivatives: If we end up on one of those oscillations, the slope might wildly disagree with
that of the true function!

An example of the Gibbs phenomenon, from [14]

This is a bigger problem than it may first appear, because when we do this on a computer, we’re using the DFT,
which implicitly periodically extends the function (subsection 2.2). So we not only need the function to have no jumps
or corners internal to its domain; we need it to match up smoothly at the edges of its domain too!

This rules out the above spectral method for all but “periodic boundary conditions”[14]. But if the story ended
right there, I wouldn’t have thought it worth building this package.

4 The Chebyshev Basis

There is another basis which we can use to represent arbitrary functions, called the Chebyshev polynomials[21], which
has a really neat relationship to the Fourier basis.

1

z = ejθ

z = z−1

= e−jθ

xθ
Re{z}

Im{z}

Let x ∈ [−1, 1] Chebyshev

= cos(θ), θ ∈ R Fourier

=
1

2
(z + z−1), |z| = 1 Laurent

(6)

The kth Chebyshev polynomial is defined as Tk(x) = Re{zk} = 1
2 (z

k + z−k) = cos(kθ) by Euler formula:
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T0(x) = Re{z0} = 1

T1(x) = Re{z1} = 1

2
(ejθ + e−jθ) = cos(θ) = x

T2(x) =
1

2
(ej2θ + e−j2θ) = cos(2θ)

but also =
1

2
(z2 + 2 + z−2)︸ ︷︷ ︸
perfect square

−1 =
(√1

2
(z + z−1)

)2

− 1 =
( 2√

2

)2

︸ ︷︷ ︸
2

z + z−1

2︸ ︷︷ ︸
cos(θ)

−1 = 2x2 − 1

T3(x) =
1

2
(ej3θ + e−j3θ) = cos(3θ)

but also =
1

2
(z + z−1)3 − 3

2
(z + z−1) = 4x3 − 3x

...

It turns out there is a recurrent pattern:

Tk+1 =
1

2
(zk+1 + z−(k+1)) =

1

2
(zk + z−k)(z + z−1)− 1

2
(zk−1 + z−(k−1)) = 2xTk(x)− Tk−1(x)

Due to the relationship between θ and x on their respective domains, you can think of these polynomials as cosine
waves “wrapped around a cylinder and viewed from the side.”[21]

Relationship of Chebyshev domain and Fourier Domain, from [22]. Notice
the cosines are horizontally flipped. The authors use n instead of k, which is
common for Chebyshev polynomials (e.g. [21]), but I prefer k to enumerate
basis modes, for consistency.

Essentially, on the domain [−1, 1] each of these polynomials has ever more wiggles in the range [−1, 1], and they
perfectly coincide with the shadows of horizontally-reversed 2π-periodic cosines in the domain [0, π]. If we trace a
function’s value over x = cos(θ) for linearly-increasing θ ∈ [0, π] instead of tracing it for linearly-increasing x ∈ [−1, 1],
it’s as if we’re walking along the arc of the cylinder instead of along the shadow. We’re effectively moving, horizontally
flipping, and warping the function (by expanding near the edges and compressing in the middle) to a new θ domain.

We can reconstruct a function using the different variables/basis formulations, and as long as our variables are
related as in Equation 6, these reconstructions are equivalent :

y(x) =

N∑
k=0

akTk(x) ; y(z) =

N∑
k=0

ak
1

2
(zk + z−k) ; y(θ) =

N∑
k=0

ak cos(kθ) (7)

Note the set of {ak} is for k ∈ {0, ...N} and therefore has cardinality N + 1.
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4.1 The Advantage of Chebyshev

Why might we prefer this basis to the Fourier basis? Well, the advantage of a polynomial basis is we can avert the
need for periodicity at the boundaries. Polynomial fits don’t suffer the Gibbs Phenomenon, however they do suffer
from the also-bad Runge Phenomenon[14]:

The Runge phenomenon, demonstrated in (a) and (b), mitigated in (c)
and (d), from [14]

However, there is something we can do about the Runge phenomenon: By clustering fit points at the edges of the
domain, the wild wobbles go away.

If we take xn = cos(θn = πn/N), then we get a very natural clustering at the edges of [−1, 1]. What’s more, if
we have equispaced θn and a reconstruction expression built up out of sinusoids, we’re back in a Fourier paradigm (at
least in variable θ) and can exploit the efficiency of the FFT, or, better, the discrete cosine and sine transforms![19][20]

Notice too that the polynomials/projected cosines are asymmetrical, so we can natually use this basis to model
arbitrary, lopsided functions without having to worry about phase shifts like we did for a Fourier basis of discrete
harmonics.

5 An Algorithm

This all suggests a solution procedure:

Chebyshev Derivatives

1: Sample y at {xn = cos(θn)} rather than at equally spaced {xn}, thereby warping the function over the arc of a
cylinder.

2: Use the DCT to transform to frequency domain.
3: Multiply by appropriate (jk)ν to accomplish taking derivatives.
4: Inverse transform using the DST if odd function, DCT if even function.
5: Change variables back, taking care that the derivative in the Chebyshev domain entails an extra chain rule.

There are a lot of details left to be worked out here, which we’ll tackle in sequence.

11



5.1 The Discrete Cosine Transform

Because the reconstruction of y(θ) (Equation 7) only contains cosines, doing a full FFT, which tries to fit sines as well
as cosines, would be doing double work. Instead we can use the DCT. There are actually several possible definitions
of the DCT[19], but I use the DCT-I, because it is in some sense closest to the interpolant (Equation 4) we’ve already
derived.

Say y⃗ = [y0, y1, ...yN−1, yN︸ ︷︷ ︸
original vector,
length N+1

, yN−1, ...y1︸ ︷︷ ︸
redundant
information

]

︸ ︷︷ ︸
length M = 2N, necessarily even!

, that is: yn = yM−n, 0 ≤ n ≤ N

Then using M − k for k in the DFT equation (Equation 3), we get:

YM−k =

M−1∑
n=0

yne
−j 2π

M n(M−k) =

M−1∑
n=0

yn e
−j2πn︸ ︷︷ ︸

1

ej
2π
M nk =

1∑
n=M

yM−ne
j 2π

M (M−n)k

=

M∑
n=1

yM−n︸ ︷︷ ︸
=yn

ej2πk︸ ︷︷ ︸
1

e−j 2π
M nk =

M∑
n=1

yne
−j 2π

M nk =

M−1∑
n=0

yne
−j 2π

M nk = Yk □

let nnew = M − nold

because e−j 2π
M

Mk =
e0 = 1 and yM = y0

So when yn are redundant this way, the Yk are too, in a very mirror way. We can now use the facts Yk = YM−k

and N = M
2 in the FFT interpolation (Equation 4):

y(θ) =
1

M

(
Y0 +

∑
0<k<M

2

(
Yke

jkθ + YM−ke
−jkθ

)
+ YM/2 cos(

M

2
θ)
)

=
1

M

(
Y0 + 2

N−1∑
k=1

(
Yk

ejkθ + e−jkθ

2︸ ︷︷ ︸
cos(kθ)

)
+ YN cos(Nθ)

) (8)

At samples θn = 2π
M n = π

N n, this becomes:

y(θn) =
1

M

(
Y0 + YN cos(πn)︸ ︷︷ ︸

(−1)n

+2

N−1∑
k=1

Yk cos(
πnk

N
)
)

(DCT−1)

This is exactly the DCT-I−1, which, except for the 1
M term and a flip of Y and y, is the same as the forward

DCT-I! But the DCT and DCT−1 operate on the shorter set of Y⃗ = [Y0, ...YN ], without redundant information. Thus

FFT−1([Y0, ...YN , YN−1, ...Y1])[:N + 1] = DCT-I−1([Y0, ...YN ]) (9)

Where [:N + 1] truncates to only the first N + 1 elements ({0, ...N}). Given the equality above, we can line up
everything we now know in a diagram:

y⃗long

Y⃗long

y⃗short

Y⃗short

FFT FFT−1 DCT-I DCT-I−1

truncate

truncate−1

truncate

truncate−1

where truncate−1 stacks back
in redundant information

We can now easily see that in addition to the inverse relationship (Equation 9), we also have the forward relationship:

FFT([y0, ...yN , yN−1, ...y1])[:N + 1] = DCT-I([y0, ...yN ])
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Before we wrap up discussion of the DCT-I[19], note that the 0th and N th terms appear outside the sum, and that
the sum is multiplied by 2. In our original conception of the cosine series for y(θ) (Equation 7), all the cosines appear
equally within the sum, so our Yk are subtly different from the ak in that formulation (some scaled by a factor of 1

2
and all scaled by M). This will be important when we later transform back to the Chebyshev domain, because we will
use the DCT-I version of y(θ), not the original conception.

5.2 Even and Odd Derivatives and the Discrete Sine Transform

The DCT-I can get us in to the frequency domain, but we’ll need the help of another transform to get back out.
If we look at the full Ylong with redundant information, we have a palindromic structure around N , but also around

0, because of the repetitions[17], which ensure we can read the values of Y at negative k by wrapping around to the
end of the vector. This is describing an even function, f(−x) = f(x), which makes sense, because y(θ) is entirely
composed of cosines, which are even functions, and the forward transform is symmetrical with the inverse transform,
also ultimately a bunch of cosines if we were to interpolate Y (ω) from Yk.

The derivative of an even function is an odd function, f(−x) = −f(x), which in principle should be constructable
from purely sines, which are odd. And the derivative of an odd function is an even function again.

To see this more granularly, let’s look in more detail at the multiplication by (jk)ν that produces all the Y
(ν)
k

(Equation 5), for k ∈ {0, ...M − 1}:

Y⃗
(ν)
long = [0, jν , ...(j(N − 1))ν , (0 or (jN)ν)︸ ︷︷ ︸

depending on
ν odd or even

, (−j(N − 1))ν , ...(−j)ν ]⊙ Y⃗long

= jν · [0, 1, ...1, (0 or 1),−1, ...,−1]︸ ︷︷ ︸
1̃

ν ⊙ [0, 1, ...N − 1, N,N − 1, ...1]ν︸ ︷︷ ︸⊙Y⃗long

constant palindromic

where ⊙ is a Hadamard, or element-wise, product, and raising a vector to a power is also element-wise. We can see

1̃
ν =

{
[0, 1, ...1, 0,−1, ...,−1] if ν is odd

[0, 1, ...1, 1, 1, ...1] if ν is even

[0, 1, ...1, 0,−1, ...,−1] is odd around entries 0 and N , and [0, 1, ...1, 1, 1, ...1] is even around entry 0.

Let’s now use this to reconstruct samples in the θ domain, y
(ν)
n , for odd and even derivatives:

y(odd ν)
n =

1

M

∑
0<k<M

2

(jk)ν(Yke
jkθn − YM−k︸ ︷︷ ︸

=Yk

e−jkθn) =
1

M

N−1∑
k=1

(jk)νYk (e
jkθn − e−jkθn)︸ ︷︷ ︸

2j sin(kθn)

=
1

M
2

N−1∑
k=1

(jk)νYkj sin(
πnk

N
)︸ ︷︷ ︸

= a DST-I of Y⃗
(ν)
short · j!

(10)

y(even ν)
n =

1

M

( ∑
0<k<M

2

(jk)ν(Yke
jkθn + YM−k︸ ︷︷ ︸

=Yk

e−jkθn) + (j
M

2
)νYM/2 cos(

M

2
θn)

)

=
1

M

(
(jN)νYN cos(πn) +

N−1∑
k=1

(jk)νYk (e
jkθn + e−jkθn)︸ ︷︷ ︸

2 cos(kθn)

)

=
1

M

(
(j0)νY0 + (jN)νYN (−1)n + 2

N−1∑
k=1

(jk)νYk cos(
πnk

N
)︸ ︷︷ ︸

= a DCT-I of Y⃗
(ν)
short!

)
(11)

from odd-
ness of 1̃ν

from even-
ness of 1̃ν

Brilliant! So we can use only the non-redundant Y
(ν)
k with a DST-I or DCT-I to convert odd and even functions,

respectively, back to the θ domain!
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Note that the DCT-I and DST-I definitions given in scipy[19][20] use slightly different indexing than in my
definitions here, which can be a point of confusion. I consistently take N to be the index of the last element of the
non-redundant yn, not its length, following [21]. Note too that the DST-I only takes the k = {1, ...N − 1} elements,
since sines will result in zero crossings at k = 0 and N (no informational content), whereas the DCT-I takes all
k = {0, ...N} elements!

5.3 Transforming Back to the Chebyshev Domain

At this point we’ve accomplished all but the last step of the algorithm, but we’ve been operating with yn = y(θn) and

y
(ν)
n = y(ν)(θn), which are really samples from the θ domain, when what we really need to do is take derivatives in the
x = cos(θ) domain.

When we do this, we have to employ a chain rule, which introduces a new factor: the derivative of one of our
variables w.r.t. the other. For the 1st derivative it looks like:

d

dx
y(θ) =

d

dθ
y(θ) · dθ

dx
=

d
dθy(θ)

dx
dθ

, where
dx

dθ
=

d

dθ
cos(θ) = − sin(θ)

sin2(θ) + cos2(θ) = 1 −→ sin(θ) = ±
√

1− cos2(θ) =
√
1− x2 using upper semicircle

−→ − sin(θ) = −
√
1− x2 −→ dθ

dx
=

1
dx
dθ

=
−1√
1− x2

(
and also

d

dx
cos−1(x) =

−1√
1− x2

)
The d

dθy(θ) a.k.a y′(θ) term is actually pretty easy to handle, because we know its value (and for higher orders
too) at discretized θn from earlier (Equation 10 and Equation 11)! If we use the sampled xn = cos(θn) from step 1 of
the algorithm, then our {xn} and {θn} align, and we can find samples of the derivative w.r.t. x by plugging {xn} in
to the new factor(s) and multiplying appropriately (pointwise):

[
d

dx
y(θ)]n =

−1√
1− x2

n

⊙ y′n

5.3.1 Higher Derivatives

Let’s see it for the second derivative:

d2

dx2
y(θ) =

d

dx

y′(θ)

−
√
1− x2

=
−
√
1− x2 d

dxy
′(θ)− y′(θ) d

dx (−
√
1− x2)

1− x2

=
− d

dθy
′(θ) · dθdx√
1− x2

−
y′(θ) x√

1−x2

1− x2
=

y′′(θ)

1− x2
− xy′(θ)

(1− x2)3/2

−→ [
d2

dx2
y(θ)]n =

1

1− x2
n

⊙ y′′n −
xn

(1− x2
n)

3/2
⊙ y′n

(12)

Notice that the 2nd derivative in x requires both the 1st and 2nd derivatives in θ! This pattern will turn out to hold
for higher derivatives as well: For the νth derivative in x we require all derivatives up to order ν in θ.

Let’s see a few more:

d3

dx3
y(θ) =

−1

(1− x2)3/2
y′′′(θ) +

3x

(1− x2)2
y′′(θ) +

−2x2 − 1

(1− x2)5/2
y′(θ)

d4

dx4
y(θ) =

1

(1− x2)2
yIV (θ) +

−6x

(1− x2)5/2
y′′′(θ) +

11x2 + 4

(1− x2)3
y′′(θ) +

−6x3 − 9x

(1− x2)7/2
y′(θ)

d5

dx5
y(θ) =

−1

(1− x2)5/2
yV (θ) +

10x

(1− x2)3
yIV (θ) +

−35x2 − 10

(1− x2)7/2
y′′′(θ) +

50x2 + 55x

(1− x2)4
y′′(θ) +

−24x4 − 72x2 − 9

(1− x2)9/2
y′(θ)

(13)

As we take higher derivatives, we can see a bit of a pattern. In particular, the function of x multiplying each
derivative of y in θ comes from at most two terms in the preceding derivative, which have a predictable form:

d

dx

( p(x)

(1− x2)c−1
y(µ)(θ) +

q(x)

(1− x2)c−
1
2

y(µ−1)(θ)
)
=
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p(x)

(1− x2)c−1
y(µ+1)(θ) · dθ

dx
+

(1− x2)c−1 d
dxp(x)− p(x)(c− 1)(1− x2)c−2(−2x)

(1− x2)2c−2
y(µ)(θ) +

q(x)

(1− x2)c−
1
2

y(µ) · dθ
dx

+
(1− x2)c−

1
2

d
dxq(x)− q(x)(c− 1

2 )(1− x2)c−
3
2 (−2x)

(1− x2)2c−1
y(µ−1)(θ)

If we now gather the y(µ)(θ) terms and use the fact dθ
dx = −1√

1−x2
, we can find its new multiplying factor is equal to:

(1− x2)p′(x) + 2(c− 1)xp(x)− q(x)

(1− x2)c

This relationship holds no matter which, µ, c, p, q we’re addressing, which allows us to build up a kind of pyramid
of terms:

−1

−x 1

−2x2 − 1 3x −1

−6x3 − 9x 11x2 + 4 −6x 1

−24x4 − 72x2 − 9 50x3 + 55x −35x2 − 10 10x −1

lower d
dθ

of y higher d
dθ

of y

numerator
p and q:

increasing
d
dx

of y
pq

... ...

1
2

3
2 1

5
2 2 3

2

7
2 3 5

2 2

9
2 4 7

2 3 5
2

... ...

c at each
location:

increasing
ν

increasing µ

q always refers to the element up and to the left, and p always refers to the element above. If the arrows roll out
of the pyramid, the corresponding p or q is 0.

I’ve done the above programmatically in the code, such that we can find and apply the factors—and thereby ac-
complish the variable transformation back to the Chebyshev domain—for arbitrarily high derivatives. You’re welcome.

5.3.2 Handling Domain Endpoints

There’s a problem in the above at the edges of the domain: If x = ±1, the denominators of all the factors, which are
powers of

√
1− x2 = 0!

However, this doesn’t mean dν

dxν y can’t have a valid limit value at those points. First remember our reconstruction
y(θ) is composed of cosines, so notice if we take odd derivatives in θ, we get sines, and at the edges of the domain
where x→ ±1, θ → 0, π, sine will be 0! However, if we take even derivatives, then cos(0, π)→ 1,−1. Then, if we look
closely at the derivatives in x (Equation 13), we can see that even derivatives in θ of y are divided by even powers of√
1− x2, and the highest power in a denominator is an odd power of

√
1− x2. If we multiply through so everything is

over the highest-power denominator and then combine the expression into a single fraction, we get a situation where
the odd-derivative terms are 0 because sines, and the even-derivative terms are 0 because they’re multiplied by at least
one
√
1− x2.

This means the numerator as well as the denominator is 0 at the domain endpoints. 0
0 is an indeterminate form,

so we can use L’Hôpital’s rule!
Let’s see it for the 1st derivative. Plugging in the DCT-I reconstruction (Equation 8) for y(θ):

lim
x→±1
θ→0,π

d

dθ

1

M

(
Y0 + YN cos(Nθ) + 2

N−1∑
k=1

Yk cos(kθ)
)
· dθ
dx

= lim
x→±1
θ→0,π

1
M

(
−NYN sin(Nθ)− 2

∑N−1
k=1 kYk sin(kθ)

)
−
√
1− x2

d
dx−→
d
dx

= lim
x→±1
θ→0,π

1
M

(
−N2YN cos(Nθ)− 2

∑N−1
k=1 k2Yk cos(kθ)

)
· −1

���√
1−x2

x

���√
1−x2

= lim
x→±1
θ→0,π

1
M

(
N2YN cos(Nθ) + 2

∑N−1
k=1 k2Yk cos(kθ)

)
x

=


1
M

(
N2YN + 2

∑N−1
k=1 k2Yk

)
at x = 1, θ = 0

− 1
M

(
N2(−1)NYN + 2

∑N−1
k=1 k2(−1)kYk

)
at x = −1, θ = π

(1st endpoints)
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And now let’s do it for the 2nd derivative, with some slightly more compact notation:

lim
x→±1
θ→0,π

√
1− x2y′′(θ)− xy′(θ)

(1− x2)3/2
→ 0

0

d
dx−→
d
dx

����√
1− x2y′′′(θ) −1

���√
1−x2 +

������−x√
1−x2

y′′(θ)− (
������
xy′′(θ) −1√

1−x2
+ y′(θ))

−3x
√
1− x2

→ 0

0

d
dx−→
d
dx

�−yIV (θ) ��−1

���√
1−x2�−y′′(θ) ��−1

���√
1−x2

6x2−3

���√
1−x2

=
1

6x2 − 3
(yIV (θ) + y′′(θ))

We already know y′′(θ) = 1
M

(
−N2YN cos(Nθ)− 2

∑N−1
k=1 k2Yk cos(kθ)

)
. We can easily find

yIV (θ) =
1

M

(
N4YN cos(Nθ) + 2

N−1∑
k=1

k4Yk cos(kθ)
)

Now we can evaluate these and the factor 1
6x2−3 at the limit values and put it all together to find:

1
3M

(
(N4 −N2)YN + 2

∑N−1
k=1 (k4 − k2)Yk

)
at x = 1, θ = 0

1
3M

(
(N4 −N2)(−1)NYN + 2

∑N−1
k=1 (k4 − k2)(−1)kYk

)
at x = −1, θ = π

(2nd endpoints)

5.3.3 Endpoints for Higher Derivatives

We can do the above for higher derivatives too. However, in general finding the endpoints for the νth derivative
involves ν applications of L’Hôpital’s rule, slowly cancelling one power of

√
1− x2 at a time after each. The algebra

gets to be pretty gnarly.
But there is some hope: We can see a pattern like the pyramid scheme from earlier, because the functions multiplying

each y(µ)(θ) in the numerator of the limit argument depend only on one or two terms from before the latest L’Hôpital.
We can additionally use the relationship between variables x = cos(θ) to recognize

√
1− x2 = sin(θ) and substitute to

put everything in terms of a single variable, and then just as well perform L’Hôpital’s derivatives more simply w.r.t.
θ rather than x and cancel a sin(θ) rather than a

√
1− x2.

When we proceed, the denominator eventually acquires a single standalone term of the form D cosν(θ), which at
the domain endpoints 0 and π will be something nonzero, D0 = ±Dπ, thereby ending our journey. At the same
iteration, the numerator reduces to a set of constants, C, multiplying even-order θ-derivatives of y(θ) up to the 2νth.
Putting it all together, the endpoint formulas can be found as:


1

D0M

(
(...− C3N

6 + C2N
4 − C1N

2)YN + 2
∑N−1

k=1 (...− C3k
6 + C2k

4 − C1k
2)Yk

)
at x = 1, θ = 0

1
DπM

(
(...− C3N

6 + C2N
4 − C1N

2)(−1)NYN + 2
∑N−1

k=1 (...− C3k
6 + C2k

4 − C1k
2)(−1)kYk

)
at x = −1, θ = π

where the alternating plus and minus in the k and N terms comes from the fact the 2nd derivative contains −cosines,
the 4th +cosines, the 6th −cosines again, and so on.

Because the act of cancellation and the functions containing powers of
√
1− x2 = sin(θ) can’t be easily represented

in numpy, computing C and D requires a symbolic solver like sympy. I’ve devised an implementation to construct
expressions for the endpoints, up to arbitrary order. But due to its complexity, I’ve opted to keep this full process out
of the main package code. Instead, I’ve hard-coded the solutions up to 4th order and raise a warning with reference to
the notebook if users try to go higher.

It is possible to sidestep all these ballooningly-complicated variable mappings and higher derivative limit-evaluations
by building up to higher derivatives from lower ones in stages (being careful to only use even derivatives if our end goal
is even, so we preserve the Nyquist term). This would entail more forward transforms but actually no more inverse
ones, since we have to remember the results of all the inverse transforms up to the νth order anyway.
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6 Multidimensionality

We are now fully equipped to find derivatives for 1-dimensional data. This is technically all we need, because, due
to linearity of the derivative operator, we can find the derivative along a particular dimension of a multidimensional
space by using our 1D solution along each constituent vector running in that direction, and we can find derivatives
along multiple dimensions by applying the above in series along each dimension:

∂2

∂x1∂x2
y(x1, x2) = Algo(Algo(yi, 1

st, x1)j , 1
st, x2) ∀ i, j

∇2y = (
∂2

∂x2
1

+
∂2

∂x2
2

)y = Algo(yi, 2
nd, x1) + Algo(yj , 2

nd, x2) ∀ i, j

where i, j are indexers as in the computing sense and have nothing to do with the imaginary unit, Algo applies the
algorithm to each vector along the dimension given by the third argument, and the 1st and 2nd in the second argument
refer to the derivative order.

Each application to a vector incurs O(N logN) cost, and fundamentally applying the method to higher-dimensional
data must involve a loop, so the full cost of applying along any given direction is (assuming length N in all dimensions)
O(ND logN), where D is the dimension of the data. Aside from pushing this loop lower down into numpy to take
advantage of vectorized compute, there can be no cost savings for a derivative in a particular dimension.

6.1 Dimensions Together versus In Series

But can we simplify the situation at all?
Due to the linearity of the Fourier transform, transforming along all dimensions, multiplying by appropriate (jk)ν

along corresponding dimensions of the transformed data, and then inverse transforming along all dimensions is equiv-
alent to transforming, multiplying, and inverse transforming each dimension in series[18]:

y Y (jk)ν̃ ⊙ Y dy

FFT

FFT

⊙(jk)νd

⊙(jk)νd′

FFT−1

FFT−1

O(D ·ND logN) O(D ·ND) O(D ·ND logN)

That’s really neat, but does it save us anything, really? Let’s see it in series:

y Yd (jk)νd ⊙ Yd ∂dy

Yd′(jk)νd′ ⊙ Yd′∂d′∂dy...

FFT

FFT

⊙(jk)νd′

⊙(jk)νd

FFT−1

FFT−1

O(ND logN) O(ND) O(ND logN)

repeat for D
dimensions

If we add up the costs, we can see that it’s actually no more or less efficient to differentiate along all dimensions at
once versus in series.
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6.2 Splintering

The above is good news, because converting back to the Chebyshev domain turns out to be terribly knotty and difficult
in the simultaneous-multidimensional derivatives case, for several reasons.

First, the fact we need all inverse transforms in θ up to order ν to compute the derivative of order ν in x leads to
far more terms in multiple dimensions, due to interactions. I’ll demonstrate with the simplest possible case, 2nd order
in one dimension and 1st order in another:

∂3

∂x2
1∂x2

y(θ1, θ2) =
∂

∂x2

[ ∂2

∂x2
1

y(θ1, θ2)
]

(14)

Let’s break this up and apply the multivariable chain rule[23] and product rule to just evaluate that inner portion
first:

∂2

∂x2
1

y(θ1, θ2) =
∂

∂x1

( ∂

∂θ1
y · dθ1

dx1
+

∂

∂θ2
y ·

0

�
��

dθ2
dx1

)
multivariable chain rule

=
∂

∂θ1
y · d

2θ1
dx2

1

+
∂

∂x1

( ∂

∂θ1
y
)
· dθ1
dx1

product rule

=
∂

∂θ1
y · d

2θ1
dx2

1

+
( ∂2

∂θ21
y · dθ1

dx1
+

∂2

∂θ2∂θ1
y

0

�
��

dθ2
dx1

)
· dθ1
dx1

multivariable chain rule

=
∂

∂θ1
y · d

2θ1
dx2

1

+
∂2

∂θ21
y ·

( dθ1
dx1

)2

Now using this to evaluate Equation 14:

∂3

∂x2
1∂x2

y(θ1, θ2) =
∂

∂x2

[ ∂

∂θ1
y · d

2θ1
dx2

1

+
∂2

∂θ21
y ·

( dθ1
dx1

)2]

=
∂

∂θ1
y ·

0

�
�
�

��∂

∂x2

d2θ1
dx2

1

+
( ∂2

∂θ21
y ·

0

�
��

dθ1
dx2

+
∂2

∂θ1∂θ2
y · dθ2

dx2

)
· d

2θ1
dx2

1

+
∂2

∂θ21
y

0

���
���∂

∂x2

( dθ1
dx1

)2

+
( ∂3

∂θ31
y ·

0

�
��

dθ1
dx2

+
∂3

∂θ21∂θ2
y · dθ2

dx2

)
·
( dθ1
dx1

)2

=
∂2

∂θ1∂θ2
y · dθ2

dx2
· d

2θ1
dx2

1

+
∂3

∂θ21∂θ2
y · dθ2

dx2
·
( dθ1
dx1

)2

The double derivative in x1 has splintered the expression into two, and then the single derivative in x2 has interacted
with both those terms.

All the terms that involve derivatives of a θ w.r.t. an x are ultimately just functions of x. In fact, dθ2
dx2

is just our

old friend −1√
1−x2

2

, and you can pick out
(
dθ1
dx1

)2
and d2θ1

dx2
1
in Equation 12. Together they are a Cartesian product of the

the 1D case!
Meanwhile, the ∂y terms have different orders, which means that to find them we need to multiply Y , the all-

dimensions transform of y, by different orders of (jk). If we do this carefully, the best-case scenario is that we incur
the same amount of work as the in-series case, but it takes some extra bookkeeping and data copying.

Most gnarly, at the edges of the domain we still need to use L’Hôpital’s rule on an analytic expression to evaluate
the limits of

∂
∑

νi

∂xν1
1 ...∂xνD

D

y(θ1, ...θD)

This is made worse by the fact our analytic expression is based on the DCT-I, which has terms outside the central
sum, so as we substitute the DCT-I in to the DCT-I, we get ever more terms (3D of them), e.g. in 2D:

y(θ1, θ2) =
1

M2

[
Y00 + YN0 cos(Nθ1) + Y0N cos(Nθ2) + YNN cos(Nθ1) cos(Nθ2)
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+ 2

N−1∑
k1=1

Yk10 cos(k1θ1) + 2

N−1∑
k2=1

Y0k2
cos(k2θ2) + 2 cos(Nθ2)

N−1∑
k1=1

Yk1N cos(k1θ1)

+ 2 cos(Nθ1)

N−1∑
k2=1

YNk2
cos(k2θ2) + 4

N−1∑
k1=1

N−1∑
k2=1

Yk1k2
cos(k1θ1) cos(k2θ2)

]
We could generalize the original conception (Equation 7), which has a single sum with a0 = Y0

M , ak = 2Yk

M for k ∈
[1, N − 1], aN = YN

M , to get a y(θ⃗) with only a single term, but this involves still more extra bookkeeping.
Worst of all, we then still have to take limits as different combinations of dimensions reach the edges, which becomes

a combinatorial nightmare. This was already hard enough in 1D!
So although numpy does provide the fftn function for transforming in multiple dimensions at once, and scipy

provides similar dctn and dstn functions, they wouldn’t confer a computational-complexity benefit and would require
the math and code to get massively more complicated, so I have chosen not to use them. From a user-friendliness
perspective, I also judge it to be somewhat more confusing to specify multiple derivatives at once (although generalizing
the nu and axis parameters to vectors is possible). For all these reasons, I have chosen to limit the package to taking
derivatives along a single dimension at once.

Multidimensional data can still be handled, however, via clever indexing and use of fft, dct, and dst’s axis

parameter.

7 Arbitrary Domains

So far we’ve only used the domain [0, 2π) in the Fourier case, because this is the domain assumed by the DFT, and the
domain [−1, 1] in the Chebyshev case, because this is the where a cosine wrapped around a cylinder casts a shadow.
As you may have guessed, this hasn’t curtailed the generality of the methods at all, because we can map any domain
from a to b onto a canonical domain.

7.1 Fourier

Say we have t ∈ [a, b) that we need to map to θ ∈ [0, 2π). We can accomplish this with:

θ ∈ [0, 2π)↔ t ∈ [a, b) = [0, 2π)︸ ︷︷ ︸
θ

·b− a

2π
+ a

To get a sense this is true, let’s see an example:

2 4 6 8

−4

−2

2

4

t

cos(π2 t+
π
6 ) + 2 sin( 3π2 t+ π

4 ), t ∈ [4, 8)

2 4 6 8

−4

−2

2

4

θ

cos(θ +��2π + π
6 ) + 2 sin(3θ +��6π + π

4 ), θ ∈ [0, 2π)
t = θ 8−4

2π + 4

phase is same
modulo 2π

In the discrete case, where we have M samples on [a, b), then we can map tn with:

θn ∈
{0, ...M − 1} · 2π

M
↔ tn ∈

{0, ...M − 1} ·��2π
M

· b− a

��2π
+ a

In other words, if we want to take a spectral derivative of a function that’s periodic on [a, b), then we need to
sample it at t_n = np.arange(M)/M * (b - a) + a = np.linspace(a, b, M, endpoint=False).
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7.2 Chebyshev

Here both ends are inclusive, so we have t ∈ [a, b] that we need to map to x ∈ [−1, 1]. We can accomplish this with:

x ∈ [−1, 1]↔ t ∈ [a, b] = [−1, 1]︸ ︷︷ ︸
x

·b− a

2
+

b+ a

2

To get a sense this is true, let’s see an example:

−1 1 2 3 4
−20

20

40

t

et sin(5t), t ∈ [1, 4)

−1 1 2 3 4
−20

20

40

x

e(
3
2x+

5
2 ) sin(5( 32x+ 5

2 )), x ∈ [−1, 1]
t = x 4−1

2 + 4+1
2

In the discrete case, where we have N + 1 samples on [a, b], then we can map tn with:

xn ∈ cos
(π{0, ...N}

N

)
↔ tn ∈ cos

(π{0, ...N}
N

)
· b− a

2
+

b+ a

2

Notice the order has flipped here, that counting up in n means we traverse x from +1→ −1. This is actually what
we want; it corresponds to the horizontal flip necessary to make cosine shadows equate with Chebyshev polynomails.

In simple code terms, if we want to take a spectral derivative of a function on [a, b], then we need to sample it at
t_n = np.cos(np.arange(N+1) * np.pi / N) * (b - a)/2 + (b + a)/2.

7.3 Accounting for Smoosh

When a function is sampled at one of the tn above, then it is as if the function lives on the canonical domain. The
actual mapping is purely notional, and the spectral differentation procedure proceeds completely agnostic to where
the data really came from.

This means the result will actually be the derivative of the smooshed or stretched version of the function on the
canonical domain. As the examples hopefully clarified, the height of this smooshed function is exactly as it was before,
but the width is compressed or expanded by a factor of:

smoosh =
length of new interval

length of old interval
=

{
2π
b−a for Fourier
2

b−a for Chebyshev

Because a derivative is calculating slope, and slope is rise over run, the answer is effectively now

dy

dx · 2 or 2π
b−a

=
dy

dx
· b− a

2 or 2π︸ ︷︷ ︸
scale

In other words, the overall derivative is scaled by the inverse of the width-smoosh. So to recover the true derivative
we want, dy

dx , we have to divide by this scale, which is a familiar term from our variable transformations t↔ θ or x.
For higher derivatives:

dνy(
dx · smoosh)ν

=
dνy

dxν
· scaleν

So we can always correct the derivative by dividing by scaleν .

To enable calculation of the scale, and to double check the user sampled their function at a correct t_n (especially
in the Chebyshev case, since cosine-spacing is easy to flub), the functions take the sample locations as a parameter.
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Notes

a. There’s a great passage in Richard Hamming’s book The Art of Doing Science and Engineering[2] where he wonders why we use the
Fourier basis so much:

“It soon became clear to me digital filter theory was dominated by Fourier series, about which theoretically I had learned
in college, and actually I had had a lot of further education during the signal processing I had done for John Tukey, who was
a professor from Princeton, a genius, and a one or two day a week employee of Bell Telephone Laboratories. For about ten
years I was his computing arm much of the time.

Being a mathematician I knew, as all of you do, that any complete set of functions will do about as good as any other
set at representing arbitrary functions. Why, then, the exclusive use of the Fourier series? I asked various electrical engineers
and got no satisfactory answers. One engineer said alternating currents were sinusoidal, hence we used sinusoids, to which I
replied it made no sense to me. So much for the usual residual education of the typical electrical engineer after they have left
school!

So I had to think of basics, just as I told you I had done when using an error-detecting computer. What is really going
on? I suppose many of you know what we want is a time-invariant representation of signals, since there is usually no natural
origin of time. Hence we are led to the trigonometric functions (the eigenfunctions of translation), in the form of both Fourier
series and Fourier integrals, as the tool for representing things.

Second, linear systems, which is what we want at this stage, also have the same eigenfunctions—the complex exponentials
which are equivalent to the real trigonometric functions. Hence a simple rule: if you have either a time-invariant system or a
linear system, then you should use the complex exponentials.

On further digging into the matter I found yet a third reason for using them in the field of digital filters. There is a
theorem, often called Nyquist’s sampling theorem (though it was known long before and even published by Whittaker, in
a form you can hardly realize what it is saying, even when you know Nyquist’s theorem), which says that if you have a
band-limited signal and sample at equal spaces at a rate of at least two in the highest frequency, then the original signal can
be reconstructed from the samples. Hence the sampling process loses no information when we replace the continuous signal
with the equally spaced samples, provided the samples cover the whole real line. The sampling rate is often known as the
Nyquist rate after Harry Nyquist, also of servo stability fame, as well as other things [also reputed to have been just a really
great guy who often had productive lunches with his colleagues, giving them feedback and asking questions that brought out
the best in them]. If you sample a non-band-limited function, then the higher frequencies are “aliased” into lower ones, a word
devised by Tukey to describe the fact that a single high frequency will appear later as a single low frequency in the Nyquist
band. The same is not true for any other set of functions, say powers of t. Under equally spaced sampling and reconstruction
a single high power of t will go into a polynomial (many terms) of lower powers of t.

Thus there are three good reasons for the Fourier functions: (1) time invariance, (2) linearity, and (3) the reconstruction
of the original function from the equally spaced samples is simple and easy to understand.

Therefore we are going to analyze the signals in terms of the Fourier functions, and I need not discuss with electrical
engineers why we usually use the complex exponents as the frequencies instead of the real trigonometric functions. [It’s down
to convenience, really.] We have a linear operation, and when we put a signal (a stream of numbers) into the filter, then out
comes another stream of numbers. It is natural, if not from your linear algebra course then from other things such as a course
in differential equations, to ask what functions go in and come out exactly the same except for scale. Well, as noted above,
they are the complex exponentials; they are the eigenfunctions of linear, time-invariant, equally spaced sampled systems.

Lo and behold, the famous transfer function [contains] exactly the eigenvalues of the corresponding eigenfunctions! Upon
asking various electrical engineers what the transfer function was, no one has ever told me that! Yes, when pointed out to
them that it is the same idea they have to agree, but the fact it is the same idea never seemed to have crossed their minds!
The same, simple idea, in two or more different disguises in their minds, and they knew of no connection between them! Get
down to the basics every time!”

In that spirit, with Patron Saint Hamming watching over us, let’s continue: subsection 1.1

References

[1] Lebesgue Integrable, https://mathworld.wolfram.com/LebesgueIntegrable.html

[2] Hamming, R., 1996, The Art of Doing Science and Engineering

[3] Pego, B., Simplest proof of Taylor’s theorem, https://math.stackexchange.com/a/492165/278341

[4] Disintegration By Parts, Why do Fourier transforms use complex numbers?,
https://math.stackexchange.com/a/1293127/278341

[5] Yagle, A., 2005, https://web.eecs.umich.edu/∼aey/eecs206/lectures/fourier2.pdf

[6] https://math.stackexchange.com/questions/1105265/why-do-fourier-series-work

[7] Xue, S., 2017, Convergence of Fourier Series, https://math.uchicago.edu/∼may/REU2017/REUPapers/Xue.pdf

[8] Derivation of Fourier Series, http://lpsa.swarthmore.edu/Fourier/Series/DerFS.html

[9] Sego, D., Demystifying Fourier analysis, https://dsego.github.io/demystifying-fourier/

21

https://en.wikipedia.org/wiki/Richard_Hamming
https://deanebarker.net/tech/linkedin/harry-nyquist-again/
https://deanebarker.net/tech/linkedin/harry-nyquist-again/
https://mathworld.wolfram.com/LebesgueIntegrable.html
https://math.stackexchange.com/a/492165/278341
https://math.stackexchange.com/a/1293127/278341
https://web.eecs.umich.edu/~aey/eecs206/lectures/fourier2.pdf
https://math.stackexchange.com/questions/1105265/why-do-fourier-series-work
https://math.uchicago.edu/~may/REU2017/REUPapers/Xue.pdf
http://lpsa.swarthmore.edu/Fourier/Series/DerFS.html
https://dsego.github.io/demystifying-fourier/


[10] Nakagome, S. Fourier Transform 101 — Part 4: Discrete Fourier Transform,
https://medium.com/sho-jp/fourier-transform-101-part-4-discrete-fourier-transform-8fc3fbb763f3

[11] Oppenheim, A. & Willsky, A., 1996, Signals and Systems, 2nd Ed.

[12] Brunton, S., The Fourier Transform and Derivatives, https://www.youtube.com/watch?v=d5d0ORQHNYs

[13] Trefethen, N., 2000, Spectral Methods in Matlab, Chapter 4,
https://epubs.siam.org/doi/epdf/10.1137/1.9780898719598.ch4

[14] Kutz, J.N., 2023, Data-Driven Modeling & Scientific Computation, Ch. 11,
https://faculty.washington.edu/kutz/kutz book v2.pdf

[15] Discrete Fourier Transform, https://numpy.org/doc/2.1/reference/routines.fft.html

[16] The Fourier spectral method,
https://atmos.washington.edu/∼breth/classes/AM585/lect/DFT FS 585 notes.pdf

[17] Bristow-Johnson, R., 2014, About Discrete Fourier Transform vs. Discrete Fourier Series,
https://dsp.stackexchange.com/a/18931/40873

[18] Johnson, S., 2011, Notes on FFT-based differentiation, https://math.mit.edu/∼stevenj/fft-deriv.pdf

[19] https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html

[20] https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html

[21] Trefethen, N., 2000, Spectral Methods in Matlab, Chapter 8,
https://epubs.siam.org/doi/epdf/10.1137/1.9780898719598.ch8

[22] Burns, K., et al., 2020, Dedalus: A flexible framework for numerical simulations with spectral methods,
https://www.researchgate.net/publication/
340905766 Dedalus A flexible framework for numerical simulations with spectral methods

[23] The Chain Rule for Multivariable Functions,
https://math.libretexts.org/Bookshelves/Calculus/Calculus (OpenStax)/14%
3A Differentiation of Functions of Several Variables/14.05%3A The Chain Rule for Multivariable Functions

22

https://medium.com/sho-jp/fourier-transform-101-part-4-discrete-fourier-transform-8fc3fbb763f3
https://www.youtube.com/watch?v=d5d0ORQHNYs
https://epubs.siam.org/doi/epdf/10.1137/1.9780898719598.ch4
https://faculty.washington.edu/kutz/kutz_book_v2.pdf
https://numpy.org/doc/2.1/reference/routines.fft.html
https://atmos.washington.edu/~breth/classes/AM585/lect/DFT_FS_585_notes.pdf
https://dsp.stackexchange.com/a/18931/40873
https://math.mit.edu/~stevenj/fft-deriv.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html
https://epubs.siam.org/doi/epdf/10.1137/1.9780898719598.ch8
https://www.researchgate.net/publication/340905766_Dedalus_A_flexible_framework_for_numerical_simulations_with_spectral_methods
https://www.researchgate.net/publication/340905766_Dedalus_A_flexible_framework_for_numerical_simulations_with_spectral_methods
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions
https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.05%3A_The_Chain_Rule_for_Multivariable_Functions

	Bases
	The Fourier Basis

	Transforms
	The Fourier Transform
	A Whole Family

	Taking Derivatives in the Fourier Domain
	Taking Derivatives in the Discrete Case
	The DFT Pair
	Interpolation
	Taking Derivatives of the Interpolant

	Limitations

	The Chebyshev Basis
	The Advantage of Chebyshev

	An Algorithm
	The Discrete Cosine Transform
	Even and Odd Derivatives and the Discrete Sine Transform
	Transforming Back to the Chebyshev Domain
	Higher Derivatives
	Handling Domain Endpoints
	Endpoints for Higher Derivatives


	Multidimensionality
	Dimensions Together versus In Series
	Splintering

	Arbitrary Domains
	Fourier
	Chebyshev
	Accounting for Smoosh


